Some Remarks on Mahler’s Classification in Higher Dimension
نویسندگان
چکیده
We prove a number of results on the metric and non-metric theory of Diophantine approximation for Yu’s multidimensional variant of Mahler’s classification of transcendental numbers.
منابع مشابه
Some remarks on diophantine equations and diophantine approximation
We give many equivalent statements of Mahler’s generalization of the fundamental theorem of Thue. In particular, we show that the theorem of Thue–Mahler for degree 3 implies the theorem of Thue for arbitrary degree ≥ 3, and we relate it with a theorem of Siegel on the rational integral points on the projective line P(K) minus 3 points. Classification MSC 2010: 11D59; 11J87; 11D25
متن کاملSome Generalized Lacunary Power Series with Algebraic Coefficients for Mahler’s U−number Arguments
In this work, we show that under certain conditions the values of some generalized lacunary power series with algebraic coefficients for Mahler’s Um−number arguments belong to either a certain algebraic number field or ⋃t i=1 Ui in Mahler’s classification of the complex numbers, where t denotes a positive rational integer dependent on the coefficients of the given series and on the argument. Mo...
متن کاملMahler’s Expansion and Boolean Functions
The substitution of X by X2 in binomial polynomials generates sequences of integers by Mahler’s expansion. We give some properties of these integers and a combinatorial interpretation with covers by projection. We also give applications to the classification of boolean functions. This sequence arose from our previous research on classification and complexity of Binary Decision Diagrams (BDD) as...
متن کاملSome remarks on the Lieb-Schultz-Mattis theorem and its extension to higher dimensions
The extension of the Lieb-Schultz-Mattis theorem to dimensions larger than one is discussed. It is explained why the variational wave-function built by the previous authors is of no help to prove the theorem in dimension larger than one. The short range R.V.B. picture of Sutherland, Rokhsar and Kivelson, Read and Chakraborty gives a strong support to the assertion that the theorem is indeed val...
متن کاملSOME REMARKS ON ALMOST UNISERIAL RINGS AND MODULES
In this paper we study almost uniserial rings and modules. An R−module M is called almost uniserial if any two nonisomorphic submodules are linearly ordered by inclusion. A ring R is an almost left uniserial ring if R_R is almost uniserial. We give some necessary and sufficient condition for an Artinian ring to be almost left uniserial.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016